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Chapter 1

Introduction

The increasing adoption of 3D models can be observed across a wide number of fields, from
entertainment and medical imaging, to virtual reality. Du to their versatility, 3D mesh mod-
els have emerged as the most used approach for representing these kind of objects. Com-
posed of vertices, edges, and faces, 3D mesh models can be effectively represented as topo-
logical structures or as multi-graph configurations, offering adaptability and ease of ma-
nipulation in various applications. Concurrently, the growing utilization of generative AI
for diverse media types, including text, music, images, slides, videos, and even websites,
demonstrates a strong interest from both the public and corporate sectors in this area. Two
recent breakthroughs in generative AI models for 2D images are DALL-E 2 and Stable Diffu-
sion. DALL-E 2, developed by OpenAI, is an advanced version of the initial DALL-E, which
was capable of generating novel, often surreal images from textual descriptions. DALL-E 2
built on this capability, providing even more coherent and high-quality 2D image outputs.
The Stable Diffusion model takes text and images as inputs, employing CLIP encoding for
the text and using UNet networks for diffusing and reconstructing the images. The unique
strength of this model lies in its ability to generate coherent and high-quality outputs.

Given the advancements in both 3D models and generative AI, it is timely and pertinent
to investigate the feasibility of employing generative models for 3D mesh structures. The
research question of this thesis is: Can the principles of DALL-E 2 and Stable Diffusion be
extended to generate 3D mesh structures from a graph representation? The implications of
this question span various domains, from 3D modeling and rendering to more advanced
applications in virtual reality and augmented reality.

In this paper, I employed a distinct methodology to explore the intersection of generative
AI and 3D mesh models. Utilizing OpenAI’s CLIP model, a sophisticated language-image
multi-modal model, I engineered a unique bridge between textual labels and the correspond-
ing graph representation of a 3D model. CLIP’s ability to understand and connect images
and text served as an effective instrument in our design, creating a semantic link that guides
the generative process. Further, I introduced a generative model, conditioned on the CLIP
model’s output, which is capable of producing images that correspond to the desired 3D
mesh structures. These results, although preliminary, hint at the immense potential of this
approach and underscore the need for further exploration and fine-tuning.

In addition, this document incorporates an extensive survey on the broader field of data
generation, offering a comprehensive look at the various methodologies, techniques, and
applications involved. The survey provides a deep dive into generative models, their devel-
opment over the years, and their impact across a multitude of domains. It aims to provide
a holistic understanding of the landscape of data generation and the strides being made to
expand its potential. This broad scope provides a robust foundation for our explorations in
applying generative AI principles to 3D mesh structures, and underscores the significance
of our preliminary results in this emerging area.
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Chapter 2

Digital Representation of 3D
objects

This section provides a comprehensive introduction to the fundamental concepts of Mani-
folds, Simplicial Complexes, and meshes, establishing the necessary background for under-
standing the 3D objects employed in this thesis. Other 3D objects representations are also
discussed (being a central part of visual representation in research), to have an overview of
the full spectum of the field.

2.1 Manifold

In our three-dimensional world, I are surrounded by a multitude of 3D objects every day.
These objects can be considered as manifold structures Bronstein et al., 2016, that possess
specific properties that make them more advantageous to work with compared to discrete
objects. A manifold M is a topological space that locally resembles Euclidean space near each
point. More precisely, each point in M has a neighborhood that is homeomorphic to an open
subset of Rn, where n is the dimension of the manifold. This characteristic of manifolds
allows for the application of concepts and tools from calculus and differential geometry,
enabling the exploration of transformations and dynamics in ways that are not feasible with
discrete objects.

In 3D representation, I will deal with 2-manifold, manifold of dimension 2 that locally re-
assembles 2 2-dimensional Euclidean plane around each point. Using the same description,
every point in a 2-manifold has a neighborhood that is homeomorphic to an open subset of
R2. A first example of a 2-manifold could be the surface of a sphere2.1

FIGURE 2.1: Sphere Manifold
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Manifold structure is however quite strict. While offering many advantages, does impose
certain constraints due to its inherent properties. One such limitation is that a manifold must
be continuous, which means that not all objects or collections of objects can be considered as
a single manifold. For instance, a disjoint collection of objects cannot be treated as a single
continuous manifold because there is no continuous transformation between the separate
components. In our three-dimensional world, as human, I may consider many objects as
single instances and not a collection of many manifolds (for example a bike) Bronstein et al.,
2016.

To describe the global structure of a manifold, I make use of transition maps and atlases.
Transition maps provide a means to smoothly relate the local coordinate systems of overlap-
ping charts, while an atlas is a collection of compatible charts that together cover the entire
manifold Zomorodian, 2005. This concept allows us to represent complex structures, such as
a bike, as a single manifold by combining local coordinate systems with the help of transition
maps.

Digitaly, it would be hard do define this infinite space without having memory issues.
Representing manifolds as mathematical formulas, such as parametric or implicit equations,
can offer precise descriptions, enabling smooth transformations and better analysis of man-
ifold structures. Parametric representations use equations to describe the coordinates of
each point on the manifold in terms of multiples parameters, which can provide a contin-
uous representation and be easily manipulated mathematically Xu, Tong, and Stilla, 2021.
However, this approach can be computationally intensive for complex manifolds and may
not cover all manifolds with simple parametric representations. The choice of representa-
tion often depends on the specific problem domain and the desired balance between pre-
cision and computational efficiency. An example of this representation would be a circle
of radius r centered at (h, k) in the Euclidean plane can be represented parametrically by
x(t) = h + r cos t and y(t) = k + r sin t with parameter t varying from 0 to 2π, or implicitly
by (x − h)2 + (y − k)2 = r2 2.2. Working with manifolds often leads to calculus problems
that can benefit from the extensive body of research in this domain. However, addressing
these problems may require the expertise of skilled theoretical researchers who possess a
deep understanding of the underlying mathematical principles and techniques.

(h, k)

r

(x, y)

t

FIGURE 2.2: Parametric representation of a circle in the Euclidean plane

2.2 Simplicial Complexes

Considering these difficulties. Many approximations of these 3D objects has been consid-
ered to represent object digitaly. The most popular method of manifold approximation in
memory would be the use of simplicial complexes. A simplicial complex is a finite collection
of simplices (vertices, edges, triangles, etc.2.3) that satisfy certain properties. These simplices
can be combined to approximate the geometry and topology of a manifold.Carmo, n.d.

Simplicial complexes are particularly useful for approximating manifolds in computer-
based applications because they allow for a discrete representation of the continuous man-
ifold structureZomorodian, 2005. This representation can be used in various fields, such
as computer graphics, computational geometry, and topological data analysis, to study and
manipulate the underlying manifold objects efficiently.
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1-simplex:
Vertex

2-simplex:
Edge

3-simplex:
Triangle

4-simplex:
Tetrahedron

FIGURE 2.3: Simplicial complexes of dimension 1, 2, 3, and 4

2.3 Meshes

Meshes, which are derived from simplicial complexes, are widely used in computer graphics
as a discrete representation of continuous manifold structures. A mesh is a collection of
geometric elements such as vertices, edges, and faces (usually triangles or quadrilaterals)
that are interconnected to form the shape and surface of a 3D object 2.4. The use of meshes
enables efficient rendering, manipulation, and analysis of complex 3D objects in various
applications, such as video games and animations.

FIGURE 2.4: Mesh Representation of a table

Meshes are highly versatile and widely used in various fields, particularly in computer
graphics and video games. Many algorithms have been developed to handle meshes and
enable them to simulate real-life objects and environments with remarkable accuracy. While
meshes may not perfectly replicate the manifold properties of real-life objects, this is not
necessarily a problem as their discrete representations can be used effectively for simulation
and rendering purposes. One such algorithm is tessellation, which enables the merging of
simplices based on the render distance to form a continuous representation of the mesh. This
technique allows for the efficient use of computational resources, ensuring that the mesh
remains visually appealing and accurate to the viewer without overburdening the system.
While tessellation does not perfectly preserve the manifold properties of the original object,
it can still provide a practical and effective solution for representing 3D objects in digital
form Luebke et al., 2002, for example:

• Efficient memory usage: By reducing the number of nodes and edges in the graph, I
can save memory resources, which is crucial for large-scale applications and real-time
processing.

• Visualization and interpretability: A reduced graph can be more easily visualized
and understood by humans, as it focuses on the most important structural components
and relationships.

• Noise reduction: Pruning and graph reduction can help filter out noise in the data,
enhancing the overall quality of the information represented in the graph.

Textures can be added to meshes to provide intrinsic information and enhance their vi-
sual appearance. Textures are images that are mapped onto the surface of a mesh to simulate
the appearance of real-life materials, such as wood, metal, or fabric. These images can be
generated from photographs or created digitally to achieve the desired effect. The process
of adding textures to a mesh involves UV mapping, which is a technique for projecting the
2D image onto the 3D mesh.
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The versatility and flexibility of meshes, coupled with their ability to incorporate various
properties such as textures, is a key factor contributing to their widespread popularity in
many fields.

2.4 Voxels

Voxels, or volumetric pixels, are another popular representation of 3D objects that differ
from meshes. Unlike meshes, which represent objects using a collection of interconnected
geometric elements, voxels represent objects as a grid of small cubic units called voxels.
Each voxel contains information about the physical properties of the object, such as its color,
texture, and density. This makes voxels particularly useful for applications such as medical
imaging and scientific simulations Lorensen and Cline, 1987Fedorov et al., 2012Li et al., 2012,
where the focus is on the internal properties of the object rather than its surface appearance.
However, voxels are generally less computationally efficient than meshes, as they require
more memory and processing power to represent the same object. As a result, the choice
between voxels and meshes often depends on the specific requirements of the application,
such as the need for high-resolution internal imaging or detailed surface rendering. 2.5

FIGURE 2.5: A 3D object made of smaller cubes (voxels) representing a voxel-
based structure

2.5 Point Clouds

Point clouds are another popular representation of 3D objects that differ from meshes and
voxels. A point cloud is a collection of points in 3D space that represent the surface or inter-
nal structure of an objectZhou, Zhang, and Foroosh, n.d. Unlike meshes, point clouds do not
explicitly define the connectivity between the points, and therefore lack information about
the object’s topology. However, point clouds are particularly useful for applications such as
3D scanning and LidarZhou, Zhang, and Foroosh, n.d., where accurate and detailed repre-
sentation of the object’s surface or environment is required. Point clouds can also be used as
an intermediate representation for generating meshes or voxelsMatthew Bolitho, n.d. One
major advantage of point clouds is their relatively low memory usage, which makes them
suitable for applications with limited computational resources. For example, photogram-
metry Remondino and El-Hakim, n.d. is a technique that often involves mapping physical
space using point clouds as a starting point, which can then be used to generate meshes or
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other representations. However, point clouds also present challenges in terms of processing
and analysis due to their lack of structure and topology. 2.6

FIGURE 2.6: Point-cloud representation of face

2.6 Other Representations

In addition, there are several other representations of 3D objects that exist: Octrees 2.7 that
divide the 3D space into smaller cubes allowing for hierarchical representation of the ob-
ject’s structure. Each of these representation has this pros and cons that will depends on the
specific requirements of the application.

FIGURE 2.7: Octree

In this paper, I will primarily focus on meshes as a representation of 3D objects for several
reasons. Firstly, meshes offer computationally efficient methods of representation and ma-
nipulation. Secondly, algorithms for simplification, such as tesselation (in the context of level
of detail), are widely available and easy to use. Thirdly, meshes are a popular representa-
tion for 3D objects in various fields, including computer graphics and scientific simulations.
Finally, while point clouds and voxels have been explored extensively in the context of ma-
chine learning tasks, meshes have received less attention. In the next section, I will introduce
graph structures as a means of analyzing mesh representations of 3D objects.

In the next section, I will introduce the concept of graphs and multigraphs, which can be
used to analyze the complex connectivity of mesh structures.
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Chapter 3

Graph and Hypergraph

In the previous chapter, I introduced simplicial complexes and meshes as the most common
representations of 3D objects. A simplicial complex is a collection of simplices. For this
paper, I will define with more constraints that a simplicial complex is a finite set of simplices.
In this way, I don’t allowed multiple edges or faces between multiple vertices. In other term,
I can define the following: S = (V , E ,F ), a simplicial complex S is a triple composed of a set
of vertices V, a set of edges E and a set of faces F.

3.1 Graph: Definition

In graph theory, an undirected graph1 is define as G = (V , E) with V the set of vertices
and E the set of edges 3.1. For example, the following graph representation can be used to
model complex structures that are not necessarily Euclidean in nature: G = (V , E) with V =
{v1, v2, . . . vn} and E = {{vi, vj} | vi, vj ∈ V ∧ i ̸= j}. Graph can be used to represent a wide
range of real-world problems, from social networks and transportation system to knowledge
graphIntroducing the Knowledge Graph: things, not strings n.d. Their non-Euclidean nature
allows them to model relationships and interactions between entities in a more flexible and
abstract way than traditional Euclidean structures.

v1 v2

v3 v4

FIGURE 3.1: A simple undirected graph with four vertices and four edges

Graph Theory has been vastly studied in many fields of computer science. Other the
years, graph theory has evolved into a vital area of mathematics and computer science with
a multitute of problem resolutions:

• Connectivity: Studying how a graph is structured, searching for connected compo-
nents and bridges in a graph (network).

• Graph traversals: Algorithm for searching in a graph such as depth-first search or
Dijkstra’s.

• Spectral graph theory: Analyzing the properties of graphs using linear algebra tech-
niques.

• Many other methods: Community detection, graph generation, graph coloring...

In the digital realm, a common way to represent a graph is by using an adjacency matrix.
This method provides a concise and efficient means of encoding the information about the
connections between vertices in the graph.

1I will now use the word graph to talk about undirected graph
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An adjacency matrix is a square matrix of size n × n, where n is the number of vertices
in the graph. The entry at position (i, j) in the matrix indicates the presence or absence of
an edge between vertex i and vertex j. For an undirected graph, the adjacency matrix is
symmetric, meaning that the matrix is equal to its transpose.

For an undirected graph G = (V, E) with vertices V = v1, v2, . . . , vn, the adjacency matrix
A is defined as:

Aij =

{
1 if {vi, vj} ∈ E
0 otherwise

The adjacency matrix representation offers several advantages, such as constant-time access
to the information about the presence or absence of an edge between any two vertices. How-
ever, it also has some drawbacks, especially when dealing with sparse graphs, as it requires
O(n2) space, which may be inefficient for graphs with relatively few edges. Alternative
representations, such as adjacency lists, can be more efficient in these cases.

The main limitation of graph is probably the fact that it strictly allowed binary relation.
In the next section, I introduce Hypergraph that remove this restriction.

3.2 Hypergraph

A hypergraph is an extension of the traditional graph concept, allowing for a more gener-
alized and flexible representation of relationships between entities. In a standard graph, an
edge connects exactly two vertices, representing a pairwise relationship (binary relations). In
contrast, a hypergraph allows edges, called hyperedges, to connect any number of vertices,
representing more complex relationships (n-arry relations) among multiple entities.

Formally, a hypergraph H 3.2 is defined as a pair (V, E), where V is a finite set of vertices
and E is a set of hyperedges. Each hyperedge e ∈ E is a non-empty subset of V. Unlike
standard graphs, there is no restriction on the cardinality of a hyperedge, which means it
can connect two or more vertices.

v1 v2

v3 v4

FIGURE 3.2: A simple hypergraph with four vertices, one edge and one hy-
peredge

Several concepts and algorithms from traditional graph theory have been extended and
adapted for hypergraphs, including connectivity, coloring, and traversals. However, due to
the increased complexity of hypergraphs, many problems become more challenging to solve
in this generalized setting.

The adjacency matrix concept can be extended for hypergraphs using higher-dimensional
structures such as hypercubes or tensors. For a hypergraph H = (V, E) with n vertices, I can
define an n-dimensional hypercube or tensor T to represent the relationships between ver-
tices within the hyperedges.

Each element of the tensor Ti1,i2,...,in is assigned a value of 1 if the vertices vi1 , vi2 , . . . , vin
form a hyperedge in H, and 0 otherwise. This representation allows for the encoding of
complex relationships involving multiple vertices simultaneously.

However, it is important to note that this tensor-based representation of hypergraphs suf-
fers from the curse of dimensionality, as the size of the tensor grows exponentially with the
number of vertices. As a result, it becomes impractical to use this representation for relations
that exceed 3 vertices due to the rapidly increasing memory requirements and computational
complexity.

In such cases, alternative representations and data structures, such as incidence matrices
or edge lists, may be more appropriate for efficiently representing and processing hyper-
graphs.
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As seen previously, Hypergraph and Simplicial complex are two different structures.
However, their topology and properties shares common concepts. In fact, hypergraphs and
simplicial complexes can both be used to represent 3D objects, and it is possible to create a
lossless bijection between them, preserving all information during the transformation pro-
cess. In the next section, I will explore the unique characteristics of hypergraphs and sim-
plicial complexes when applied to 3D objects and examine the ways to establish a lossless
bijection between the two representations.

3.3 Mesh to Hypergraph for 3D Object Representation

The representation of 3D objects in computer files can be achieved through various formats,
with the .obj format being one of the most prevalent. In this section, I delve into the unique
features of hypergraphs that make them suitable for representing 3D objects and their topo-
logical properties.

3.3.1 The .obj File Format

First, to define the transformation from .obj file to simplicial complex, I need to define what
is an .obj file formally.

An .obj file represents an object with absolute positions. It contains information about
the vertices, texture coordinates, and vertex normals of a 3D object. The vertices are defined
as 3D coordinates, the texture coordinates are 2D coordinates, and the vertex normals are
3D vectors. In addition to these, the .obj file format also specifies the faces of the object,
which are formed by connecting vertices together. A face can be described as a polygon that
is defined by an ordered list of three or more vertices.

The following is a brief overview of the main components of an .obj file:

• Vertices: These are defined using the v keyword followed by the X, Y, and Z coordi-
nates of the vertex. For example, v 1.0 2.0 3.0 would define a vertex with coordi-
nates (1.0, 2.0, 3.0). Mathematically, I can represent the set of vertices as MV , where
V = {v1, v2, . . . , vn}.

• Texture coordinates: These are defined using the vt keyword followed by the U and
V coordinates of the texture. For example, vt 0.5 0.5 would define a texture coor-
dinate with coordinates (0.5, 0.5). Mathematically, I can represent the set of texture
coordinates as MT , where T = {t1, t2, . . . , tn}.

• Vertex normals: These are defined using the vn keyword followed by the X, Y, and Z
components of the normal vector. For example, vn 0.0 1.0 0.0 would define a vertex
normal pointing in the positive Y direction. Mathematically, I can represent the set of
vertex normals as MN , where N = {n1, n2, . . . , nn}.

• Faces: These are defined using the f keyword followed by the indices of the vertices,
texture coordinates, and vertex normals that form the face. For example, f 1/1/1
2/2/1 3/3/1 would define a face formed by the vertices with indices 1, 2, and 3, tex-
ture coordinates with indices 1, 2, and 3, and vertex normals with index 1. Mathemat-
ically, I can represent the set of faces as MF , where F = { f1, f2, . . . , fn}.

Having defined the structure of an .obj file, I can now explore the process of transform-
ing this representation into anhypergraph.
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3.3.2 Transforming .obj Files to Hypergraphs

FIGURE 3.3: Mesh of a table 2.4 transform into a Graph Object

To represent a mesh file as a graph3.3, I have several options, which could be either lossless
or lossy. First, I need to decide which features from the mesh file will be used as graph
vertices, edges, etc. Some possible approaches include:

• Mapping the vectors from vertices, texture coordinates, and vertex normals to GV
(graph vertices) and splitting faces into three separate edges. Mathematically, this can
be defined as G = (V , E), where V = MV ∪ MT ∪ MN , and E = {e|e ⊂ V ∧ |e| = 2}.

• Computing the distance matrix between points and adding features of distances be-
tween edges, while ignoring vertex positions. Let D be the distance matrix between
points in MV . I can define the graph as G = (V , E), where V = MV , and E = {e|e ⊂
V ∧ |e| = 2 ∧ d(e) ∈ D}.

• Adding information about face normals and incorporating it into the hypergraph. Let
FN be the set of face normals. I can define the hypergraph as H = (V , E), where
V = MV ∪ FN , and E = {e|e ⊂ V ∧ |e| ≥ 2}.

• Using only relative positions of vertices. Let RV be the set of relative vertex positions.
I can define the graph as G = (V , E), where V = RV , and E = {e|e ⊂ V ∧ |e| = 2}.

These approaches allow for different levels of detail and complexity when transforming
a mesh file into a graph or hypergraph representation.

In the next section, I will now delve into the state of the art regarding the graph genera-
tion and data generation in general.
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Chapter 4

Literature Review: Graph
Generation

Comment: This paper is complementary to the following slides. https://docs.google.
com/presentation/d/1f4hcvEmzsDWrFlVHd_kteLGmQHmnJ1y8HiYpUDUlLvg/They follow a sim-
ilar but different structure and some paper or part are more details on the slides.

The development of generative models capable of creating realistic and coherent data
has garnered significant attention in recent years, particularly with the success of models
like GPT-3 Brown et al., 2020, Stable Diffusion AI, 2022, and DALL-E 2 OpenAI, 2022. These
models have demonstrated remarkable capabilities in generating high-quality outputs for
various data types, such as text and 2D images. Extending the principles of these genera-
tive models to handle 3D mesh structures and graph representations presents an intriguing
research question, with potential implications across various domains, such as computer
graphics, virtual reality...

To address this question, it is essential to have a comprehensive understanding of the
current state of the art in graph and mesh generation, as well as the techniques employed in
graph and mesh embedding and data generation tasks. Graph and mesh embeddings play a
crucial role in this context, as they provide a means to represent complex 3D structures and
relationships in a lower-dimensional space, which can then be fed into generative models
for synthesis. Inspired by recent advancements in generative models, this literature review
aims to provide an overview of the most relevant research in the fields of graph and mesh
generation. The focus is on the methods and models that could inform the development of
a generative model for 3D mesh structures from graph representations.

The chapter is structured into sections that discuss graph and mesh embedding, text em-
bedding (necessary for generating graphs from text inputs), and data generation tasks for a
variety of data types, such as 2D images, 3D voxels, point clouds, and meshes. A particular
focus will be on the intersection of joint-embedding techniques and contrastive learning as
exemplified by models like CLIP Radford et al., 2021. CLIP represents a significant advance-
ment in multimodal learning, bridging the gap between text and images. This opens the
door to promising research avenues, exploring how its principles can be applied to other
forms of data like graphs and 3D mesh structures. By delving into these areas, I aim to ac-
quire insights into the existing techniques and strategies that can be adapted or extended to
conceive a generative model for 3D mesh structures grounded in graph representations.

4.1 Challenges

Before discussing the generation of graphs from textual input (e.g., labeled data), it is es-
sential to consider the challenges associated with the development of standard generative
models for graph-to-graph transformations Zhu et al., 2022 Li et al., 2018b:

• Non-Euclidean aspect: Graphs are non-Euclidean structures, making it challenging
to directly apply algorithms designed for Euclidean data, such as images represented
by grids, to graph data. This necessitates the development of specialized models and
techniques to effectively process and generate graph data. This issue can be somewhat
mitigated in our context, as I are primarily dealing with 3D meshes. These mesh struc-
tures, despite being represented as graphs, inherently relate to Euclidean space given

https://docs.google.com/presentation/d/1f4hcvEmzsDWrFlVHd_kteLGmQHmnJ1y8HiYpUDUlLvg/
https://docs.google.com/presentation/d/1f4hcvEmzsDWrFlVHd_kteLGmQHmnJ1y8HiYpUDUlLvg/
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their geometric nature Bronstein et al., 2016. As a result, certain techniques developed
for Euclidean data might be more readily applicable or adaptable to 3D mesh data
Monti et al., 2016.

• Large output spaces: Graph generation models need to handle large output spaces,
especially when dealing with hypergraphs. This can increase the computational com-
plexity and memory requirements of the models. Li et al., 2018b

• Scalability: As the size and complexity of graphs increase, generative models must
be able to scale accordingly to handle larger input sizes while maintaining reasonable
computational efficiency.Li et al., 2018b

• Multirelationality of graphs: Graphs often contain multiple types of relationships be-
tween nodes, which adds complexity to the generation process and requires models to
accurately capture and reproduce these relationships. Li et al., 2018b

• Black Box aspect: Deep learning-based generative models are often considered "black
boxes" due to their complex architectures and lack of interpretability, which makes it
difficult to understand the underlying processes that generate the desired output. Li
et al., 2018b

This number of challenges has lead to the development of many graph generation al-
gorithm Zhu et al., 2022. In their paper, the authors present a comprehensive review of
the existing deep graph generation literature, covering a wide range of emerging methods
and application areas. The paper proposes the following classifications for graph generation
methods :

• Variational autoencoders Kingma and Welling, 2013 Kipf and Welling, 2016c Tan et
al., 2017

• Generative adversarial networks Goodfellow et al., 2014 Wang et al., 2017a

• Diffusion models Liu et al., 2023

The three topic will be described later in this chapter in the graph generation subsection.

4.2 Embedding

Embedding techniques have become an essential aspect of machine learning and deep learn-
ing applications. These methods aim to represent high-dimensional, complex data in a
lower-dimensional space, which can significantly improve the performance of various tasks,
such as classification, clustering, and visualization. By capturing the inherent relationships
and structures within the data, embeddings provide a more manageable and meaningful
representation that can be effectively used by machine learning algorithms. In this section, I
will explore different embedding techniques and their applications on different data types.

4.2.1 Text Embedding

Text embedding is a crucial aspect of this research, as the generation of 3D mesh structures
from graph representations requires the effective conversion of textual inputs into numerical
representations that can be processed by generative models. Text embedding techniques
have evolved over the years, with traditional methods giving way to deep learning-based
approaches.

Traditional text embedding methods, such as Bag-of-Words (BoW) Mikolov et al., n.d.
and Term Frequency-Inverse Document Frequency (TF-IDF) Salton and Buckley, 1988, rep-
resent text as vectors based on the frequency of the words. However, these methods can fail
to capture the semantic relationships between words and suffer from high dimensionality
and sparsity issues Li et al., 2020. Limitation of word frequency can be describe by their
indifference to word order and their inability to represent idiomatic phrases. For example
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the semantic representation of "Air" and "Canada" are hard to combine to form the seman-
tic representation of "Air Canada" Mikolov et al., n.d. The Bag-of-Concepts (BoC) model Li
et al., 2020 enriches text representation by incorporating semantic concepts from external
knowledge bases, addressing the limitations of traditional methods like BoW in capturing
semantic relationships and reducing previously mentioned problems like high dimension-
ality or sparsity.

In response to these limitations, distributed representations of words emerged, with the
introduction of word2vec Mikolov et al., n.d. and doc2vec Le and Mikolov, 2014. Word2vec
can usualy rely on two algorithms, Continuous Bag-of-Words (CBOW) and Skip-gram Mikolov
et al., n.d., which learn dense, low-dimensional word embeddings capable of capturing se-
mantic and syntactic relationships. Doc2vec, an extension of word2vec, generates document-
level embeddings by incorporating paragraph vectors. CBoW has been improved multiple
times Wang et al., 2017b during the past and now can be considered now as a standard in
NLP.

Further advancements in text embedding led to the development of contextualized word
embeddings, such as ELMo Peters et al., 2018, which leverages bidirectional LSTMs to gener-
ate context-dependent embeddings. BERT Devlin et al., 2018 and GPT Brown et al., 2020 are
two other prominent contextualized word embedding models, with BERT utilizing masked
language modeling and GPT employing a unidirectional transformer architecture. Many
extension of these models have been releases during the last 10 years Liu et al., 2019 Sanh
et al., 2019 Lan et al., 2019

More recently, large-scale language models (LLMs) like GPT-3 Brown et al., 2020, GPT-
4OpenAI, 2023, BARD AI, n.d.(a), PaLM AI, n.d.(b) and LLaMA AI, n.d.(c) have demon-
strated impressive capabilities in text generation by leveraging the power of transformers
Vaswani et al., 2017 and unsupervised pretraining. These models have laid the groundwork
for the proposed approach to generate 3D mesh structures from graph representations.

In conclusion, text embedding methods have evolved from traditional, sparse represen-
tations to dense, deep learning-based embeddings, and now to large-scale language models.
This research aims to leverage these advancements to create a generative model for 3D mesh
structures using Graph Neural Networks, adapted diffusion methods, and therefore state of
the art text embedding.

4.2.2 Geometric 3D object Embedding

3D object embedding involves the transformation of 3D objects, typically represented as
point clouds, meshes, or volumetric data, into lower-dimensional continuous vector repre-
sentations. These compact representations facilitate efficient processing and analysis of 3D
data by machine learning algorithms for tasks such as object recognition, segmentation, and
generation.

Point clouds and Voxels

Point clouds and voxels are two common representations of 3D data that have been exten-
sively studied for their embedding definition, without going into too much detail in this
discussion. Both representations offer unique advantages and challenges when it comes to
defining embeddings and applying machine learning techniques.

Various approaches have been developed to define embeddings for point cloud data,
with a primary focus on capturing local and global geometric information. Notable tech-
niques include PointNet Qi et al., 2016 and PointNet++Qi et al., 2017, which have demon-
strated success in tasks such as object recognition, segmentation, and generation. Point-
Net++ present itself has a net improvement compare to PointNet and other model.
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FIGURE 4.1: PointNet++ Qi et al., 2017 ("ours") compared to PointNet Qi et
al., 2016 and the ground truth

Voxel representations discretize the continuous 3D space into a fixed grid, making it eas-
ier to apply conventional machine learning techniques, such as convolutional neural net-
works (CNNs)O’Shea and Nash, 2015. A number of methods have been proposed to define
embeddings for voxel data, including 3D CNNs Tran et al., 2017, which extend the concepts
of 2D CNNs to handle the added dimensionality. The original purpose of 3D CNN is to
embedded videos but this model has been applied multiple times to voxels Qi et al., n.d.
PapersWithCode, n.d.

Both point clouds and voxels have been widely studied for their embedding definition,
and various techniques have been developed to capture the complex geometric and semantic
information contained within these 3D representations. Each representation comes with its
own set of advantages and challenges, and the choice of representation often depends on the
specific application and the availability of data.

Mesh

3D objects can be considered as manifolds, which are topological spaces locally resembling
Euclidean spaces. Manifold learning techniques 2.2. Manifold learning — scikit-learn 1.2.2
documentation n.d., such as Isomap Tenenbaum, Silva, and Langford, 2000, Locally Linear
Embedding Morris et al., 2011, Low-Rank Isomap Mehrbani, Mohammad, and Kahaei, 2021
and Laplacian Eigenmaps Belkin and Niyogi, 2003, have been used to find low-dimensional
embeddings of high-dimensional data that preserve the intrinsic geometric structure of the
objects. Some researcher also tried to tackle the problem considering theses structures as
simplicial complexes Hajij et al., 2021. However, these methods usually lack the ability to
capture complex geometric structures and semantic information.

Laplacian Eigenmaps Belkin and Niyogi, 2003 is a widely-used nonlinear dimensionality
reduction technique that aims to preserve local geometric structures of the data. Given a set
of data points x1, x2, . . . , xn in a high-dimensional space, the goal is to find a low-dimensional
embedding y1, y2, . . . , yn that preserves the local relationships among the data points. The
steps to compute the Laplacian eigenmaps are as follows:

• Construct a similarity graph: Create an undirected graph with the data points as ver-
tices. Two vertices xi and xj are connected by an edge if they are considered "close"
Belkin and Niyogi, 2003. Either in the ϵ-neighborhoods (||xi − xj|| < ϵ with ϵ ∈ R)
or n nearest neighbors (with n ∈ N). The relationship being symmetric, the adjacency
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matrix will also be symmetric. The weight can be either binary (1 if connected, 0 oth-
erwise) or using the commonly used Heat Kernels formula:

Wij =

e−
||xi−xj ||

2

t , if ||xi − xj|| < ϵ

0, otherwise
(4.1)

• Create the Embedding The graph Laplacian L is computed as L = D − W, where D is
the degree matrix (a diagonal matrix with dii = ∑j wij) and W is the adjacency matrix
containing the edge weights wij. Find the eigenvectors corresponding to the smallest
non-zero eigenvalues of the generalized eigenvalue problem: Ly = λDy. Typically, the
first k eigenvectors are used to construct the low-dimensional embedding, where k is
the desired dimensionality of the reduced space. The low-dimensional coordinates yi
for each data point xi can be formed by concatenating the corresponding components
of the first k eigenvectors.

The Laplacian eigenmaps method, which uses the heat kernel to define the weights
of the graph, can be linked to Graph Convolutional Networks (GCNs) Kipf and Welling,
2016a. GCNs are a class of deep learning models specifically designed for handling graph-
structured data. They perform convolution-like operations on graph-structured data, such
as 3D object embeddings, to learn local and global patterns in the data. This leads us to the
next section, Graph Embedding

4.2.3 Graph Embedding

Graph embedding concentrates on devising techniques to represent graph-structured data
as low-dimensional vectors. These vector representations facilitate the application of ma-
chine learning algorithms to graph data, enabling tasks such as node classification, link pre-
diction, graph clustering, and graph generation.

Various graph embedding techniques have been proposed in the literature, including
spectral methods, matrix factorization approaches, and random walk-based methods. Spec-
tral methods, such as Laplacian Eigenmaps Belkin and Niyogi, 2003 (as mentioned in the
previous section about mesh embedding), leverage graph Laplacian properties to generate
low-dimensional embeddings. Matrix factorization approaches, like GraRep Cao, Lu, and
Xu, 2015, factorize graph-related matrices to obtain node embeddings. Random walk-based
methods, such as DeepWalk Perozzi, Al-Rfou, and Skiena, 2014 and node2vec Grover and
Leskovec, 2016, use random walks to capture local and global graph structures and apply
the skip-gram model Mikolov et al., n.d. to learn embeddings.

FIGURE 4.2: A: Zachary Karate Club Graph, B: Zachary Karate Club Embed-
ding in 2D (with ACP reduction) Source: Guo and Zhao, 2020

Graph Neural Networks (GNNs) Scarselli et al., 2009 were first introduced as a class of
deep learning models specifically designed to handle graph-structured data. GNNs have
the ability to process and learn from graph data by leveraging the inherent relationships
between nodes and edges in a graph. Since their introduction, GNNs have become a widely
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studied area in machine learning, with numerous architectures and methods being proposed
to address various graph-based tasks.

Current GNN architectures can be broadly categorized into three main classes: Graph
Convolutional Networks (GCNs)Kipf and Welling, 2016b, Graph Attention Networks (GATs)
Veličković et al., 2017, and GraphSAGE Hamilton, Ying, and Leskovec, 2017, among others.

Graph Convolutional Networks (GCNs)Kipf and Welling, 2016b employ a first-order
approximation of spectral graph convolutions, an approach inspired by the Fourier trans-
form’s ability to convert a signal from the time domain to the frequency domain. These
spectral convolutions take into account the adjacency and degree matrices of a graph, allow-
ing GCNs to capture local neighborhood information.

The GCN model operates by propagating information between neighboring nodes, re-
sulting in each node being represented by an embedding that captures its local graph struc-
ture. This procedure is often compared to the convolutional operation in Convolutional
Neural Networks (CNNs), but applied to graph data.

However, the localized nature of GCNs can be both a strength and a weakness. On the
one hand, it allows the model to capture local relationships and structures effectively. On the
other hand, it also limits the model’s ability to handle global graph information and struc-
tures, and it struggles with larger graphs due to the increased computational complexity.

Graph Attention Networks (GATs)Veličković et al., 2017 introduced attention mecha-
nisms to the domain of GNNs. Like GCNs, GATs also operate based on a node’s local neigh-
borhood. However, instead of giving equal importance to all neighbors, GATs use attention
Vaswani et al., 2017 mechanisms to assign different weights to different nodes based on their
relationships.

This mechanism allows GATs to capture more nuanced, context-dependent information,
making them highly flexible and adaptable. They can model a wide range of relationships
and are particularly suitable for graphs with complex, non-homogeneous structures.

However, depending on the type of attention computation, a general drawback of GATs
lies in their computational cost. Computing attention weights for each node and its neigh-
bors can be resource-intensive, making GATs less suitable for large-scale graph data.

GraphSAGEHamilton, Ying, and Leskovec, 2017 is a general inductive framework that
generates embeddings for previously unseen data. It does this by sampling and aggregating
features from a node’s local neighborhood. Unlike GCNs and GATs, which are transduc-
tive and require access to the entire graph structure, GraphSAGE is capable of generating
embeddings for new nodes or graphs during inference.

While this inductive approach makes GraphSAGE versatile and adaptable to unseen
data, it does come with its limitations. In particular, GraphSAGE might not capture higher-
order relationships or global graph properties effectively, as it primarily focuses on local
neighborhood information.

A comparative summary of these three models is provided in Table 4.1. Note that the
"Performance" column in this table is an oversimplification. The actual performance of these
models can vary significantly depending on the specific task, the graph structure, and the
nature of the node and edge features.

TABLE 4.1: Comparison of GNN Architectures

Model Limitations Performance
GCN Struggles with global structures Good for smaller graphs
GAT High computational cost Excellent for complex structures
GraphSAGE Struggles with global properties Versatile across multiple tasks height

In addition to these primary architectures, there have been numerous other GNN vari-
ants proposed for specific applications, such as Graph Isomorphism Networks (GINs) Xu
et al., 2018 for graph classification, and Dynamic Graph Convolutional Networks (DGCNs)
Wang et al., 2018 for dealing with dynamic graphs where the topology changes over time.

Finally, it’s important to highlight our initial hypothesis that Graph Convolutional Net-
works (GCNs) might be particularly well-suited for our task of generating 3D mesh struc-
tures from graph representations. Our reasoning stems from the spectral nature of GCNs,
which relies on the spectral domain for graph convolution operations. This mechanism
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leverages the properties of the graph Laplacian, an approach that has parallels with Lapla-
cian Eigenmaps, a technique I know to perform well on geometric structures. Consequently,
I anticipate that the spectral approach of GCNs could be beneficial when working with
meshes, as they are essentially geometric structures represented as graphs. I aim to vali-
date or refute this hypothesis with our empirical results in the later sections of this work.

4.2.4 Embedding Evaluation

Evaluating the quality of graph and mesh embeddings is a crucial aspect of developing
generative models for 3D mesh structures. Various evaluation methods have been proposed
to assess the performance of embeddings with respect to their ability to capture structural
and relational properties of the original data. This subsection is essentially based on Guo
and Zhao, n.d. and Hailu et al., 2020

Intrinsic Evaluation

Intrinsic evaluation methods focus on measuring the extent to which embeddings preserve
the inherent properties of the graph, such as local and global structure, and the relationships
between entities.

• Graph Reconstruction: Assess the ability of the embeddings to reconstruct the original
graph, by measuring the similarity between the adjacency matrix of the original graph
and that of the reconstructed graph.

• Preservation of Distances: Measure the correlation between pairwise distances in the
original graph and the embedding space, to assess the preservation of global structure.

• Graph-based Metrics: Evaluate embeddings using graph-specific metrics such as clus-
tering coefficient, modularity, and centrality measures, to examine how well the em-
beddings capture the structural properties of the original graph.

Extrinsic Evaluation

Extrinsic evaluation methods involve using the embeddings as input for downstream tasks,
assessing the performance of the embeddings in the context of specific applications, most of
these techniques produces accuracy that

• Node Classification: Assess the performance of the embeddings in classifying nodes
based on their attributes or roles within the graph, which can be an indicator of how
well the embeddings capture local information.

• Link Prediction: Evaluate the embeddings’ ability to predict missing or future links
in the graph, which can be used to test the embeddings’ capacity to capture relational
information.

It is important to notice that for Node Classification or Link Prediction, the used classifier
has an impact on the accuracy. It is necessary to try multiple classifier to maximise the
accuracy.

4.3 Data Generation Task

This section provides an overview of the state of the art in generative models for a variety
of data types, including 2D images, 3D voxels, 3D point clouds, and 3D meshes. The goal
is to understand the characteristics and advantages of working with different data types
compared to graph analysis. A comprehensive understanding of this section could lead to
better insights for generating and processing data.

In this section, I will focus on data generation within the same data type (e.g., image-
to-image). The following section will discuss generating different data types from textual
information and existing methods. Text generation will not be covered here.
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4.3.1 Euclidean Data Generation

Euclidean data generation typically deals with data that resides in a regular grid structure,
such as pixels in 2D images or voxels in 3D volumes. Generative models like Generative Ad-
versarial Networks (GANs) Goodfellow et al., 2014 and Variational Autoencoders Kingma
and Welling, 2013 have shown remarkable success in generating realistic and high-quality
images.

Generative Adversarial Networks

Generative Adversarial Networks (GANs) Goodfellow et al., 2014 are a class of generative
models introduced by Goodfellow et al. in 2014. They consist of two neural networks trained
in competition: the generator, which creates synthetic data instances, and the discriminator,
which attempts to differentiate between real and synthetic instances. The generator and
discriminator are typically trained in an adversarial game, where the generator aims to fool
the discriminator into believing that the generated instances are real, while the discriminator
tries to correctly classify instances as real or synthetic.

Random Input Generator Fake Data Discriminator

Real Data

FIGURE 4.3: Diagram of a Generative Adversarial Network (GAN). The Gen-
erator (red) produces Fake Data (blue) from a Random Input (blue). The Dis-
criminator (green) receives either Real Data (blue) or Fake Data (blue) and

tries to distinguish between them.

To illustrate how the GAN training process works, let’s first discuss the loss function for
GANs. The training process involves optimizing a min-max game between the generator
and discriminator. The generator aims to produce data that the discriminator cannot distin-
guish from real data, and the discriminator aims to correctly classify real and fake data. This
process can be expressed by the following objective function:

min
G

max
D

V(D, G) = Ex∼pdata(x)[log D(x)] + Ez∼pz(z)[log(1 − D(G(z))] (4.2)

In this equation, G is the generator, D is the discriminator, x represents real data samples
from the true data distribution pdata(x), and z is the noise input to the generator, coming
from a noise distribution pz(z).

The first term of the equation calculates the expected log-likelihood of the discrimina-
tor correctly classifying real data samples. The second term calculates the expected log-
likelihood of the discriminator correctly identifying fake samples.

By optimizing this objective function, the discriminator and the generator are trained si-
multaneously: the discriminator is trained to maximize its ability to discriminate real data
from fake, and the generator is trained to minimize the discriminator’s ability to identify its
generated data as fake. Thus, the generator improves its ability to generate realistic data,
while the discriminator becomes better at distinguishing between real and generated data.
This adversarial training process continues until a Nash equilibrium Nash, n.d. is reached
where the generator produces data indistinguishable from the real data, and the discrimina-
tor cannot distinguish real data from generated data, outputting a probability of 0.5 for all
inputs.
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GANs have shown impressive results in generating realistic images and have been widely
used in various fields such as image synthesis, super-resolution, and image-to-image trans-
lation. The foundational work of GANs has inspired numerous variants and improvements,
including but not limited to Conditional GANs (cGANs) Mirza and Osindero, 2014, Deep
Convolutional GANs (DCGANs) Radford, Metz, and Chintala, 2015, and Wasserstein GANs
(WGANs) Arjovsky, Chintala, and Bottou, 2017, each with their unique strengths and appli-
cations.

However, training GANs can be challenging due to issues like mode collapseCommon
Problems | Machine Learning | Google for Developers n.d., where the generator learns to pro-
duce a limited variety of samples, and the difficulty of balancing the training of the generator
and discriminator to avoid one overpowering the other.

Diffusion

Diffusion models, a class of generative models, are built upon the principle of stochastic
processes known as diffusion processes. In these models, data is imagined to undergo a
Markovian diffusion process, which transforms it from a simple noise distribution to the
complex data distribution I wish to model.

FIGURE 4.4: Diffusion Process

A simple form of a diffusion process can be expressed as follows:

xt+1 = xt +
√

2DN(0, 1) +
1
2

b(xt)
2 (4.3)

where xt+1 and xt are the states of the process at time steps t + 1 and t, respectively, D
is the diffusion coefficient, and N(0, 1) is a standard normal distribution. The term b(xt)
denotes a drift function that determines the direction and speed of the diffusion process at
each time step.

Originally, diffusion models were not efficient enough to compete with other generative
models like GANs or VAEs, mainly due to their slow mixing times. However, recent ad-
vancements like Denoising Diffusion Probabilistic Models (DDPMs) Ho, Jain, and Abbeel,
2020 and Stable Diffusion Models Stability.ai, n.d. that diffused on embedding instead of
the original data have significantly improved the generation quality and speed of diffusion
models, making them a competitive choice for generating high-quality samples in various
domains.

Variational AutoEncoder

Variational Autoencoders (VAEs) Kingma and Welling, 2013 4.5 are another class of genera-
tive models that have been widely used in various applications. They belong to the family
of latent variable models and are particularly known for their ability to learn the underlying
data distribution in an unsupervised manner.
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FIGURE 4.5: Variational Autoencoder with graph data

VAEs consist of two main components: an encoder and a decoder. The encoder network
maps the input data to a latent space, and the decoder network maps points in the latent
space back to the data space. VAEs impose a specific structure on the latent space, typically
assuming that the latent variables follow a multivariate Gaussian distribution.

The objective function of VAEs consists of two parts: a reconstruction loss that encour-
ages the decoded samples to resemble the original data, and a regularization term that en-
courages the latent variables to follow the assumed distribution. The VAE objective can be
written as follows:

LVAE(θ, ϕ; x) = Eqϕ(z|x)[log pθ(x|z)]− KL(qϕ(z|x)||p(z)) (4.4)

where qϕ(z|x) is the encoding distribution, pθ(x|z) is the decoding distribution, and
KL(·||·) denotes the Kullback-Leibler divergence. The Kullback-Leibler (KL) divergence is
a measure of how one probability distribution diverges from a second, expected probability
distribution.

Mathematically, the KL divergence of two continuous probability distributions is defined
as:

DKL(P||Q) =
∫ ∞

−∞
p(x) log

(
p(x)
q(x)

)
dx (4.5)

This formula is of course declined for discret probability with a sum.
The first term in the objective encourages the model to reconstruct the input data well,

while the second term encourages the latent space to follow a predefined distribution, typi-
cally a standard normal distribution.

VAEs have several advantages such as being able to perform both generation and in-
ference tasks, producing smooth latent spaces, and having a sound theoretical foundation.
However, VAEs are also known for producing blurrier samples compared to GANs and
might require more complex architectures or additional techniques to generate high-quality
samples.
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The following table compare the 3 models:

GAN Diffusion Variational Au-
toencoder

Training Complex-
ity

Resource-intensive Medium resource
demand

Lower resource de-
mand

Result Quality High fidelity, sharp
details

High fidelity, less
sharp details

Lower fidelity,
blurred details

Stability of Train-
ing

Potential for insta-
bility due to adver-
sarial nature

Stable due to ex-
plicit noise model

Stable due to deter-
ministic encoding-
decoding structure

Latent Space Inter-
polation

Smooth transitions,
less coverage

Less smooth transi-
tions, adequate cov-
erage

Smooth transitions,
excellent coverage

Mode Collapse Prone due to adver-
sarial training

Less prone due to
denoising process

Least prone due to
regularization in la-
tent space

TABLE 4.2: Comparison between GAN, Diffusion, and Variational Autoen-
coder models

The properties are defined by:

• Training Complexity: Refers to the computational resources and time required to train
the model. GANs generally require more resources and have a higher computational
complexity compared to Diffusion and VAE models.

• Sample Quality: Refers to the quality of the samples generated by the model. GANs
are generally capable of generating high-fidelity samples with sharp details, Diffusion
models also create high-fidelity samples but with less sharp details, while VAEs typi-
cally produce samples of lower fidelity with more blurred details.

• Stability of Training: GANs can potentially exhibit instability due to their adversarial
nature, while Diffusion models and VAEs provide more stable training due to their
explicit noise model and deterministic encoding-decoding structure respectively.

• Latent Space Interpolation: Refers to the model’s ability to generate novel samples by
interpolating between points in the latent space. GANs and VAEs are known for their
capability of creating smooth transitions between different points in the latent space,
with VAEs typically having better coverage of the space, while Diffusion models may
have less smooth transitions.

• Mode Collapse: Refers to the situation where the model produces similar or identical
samples, failing to capture the diversity in the training data. GANs are prone to mode
collapse due to the adversarial nature of their training, Diffusion models are less prone
due to their denoising process, and VAEs are least prone due to the regularization
imposed in the latent space.

Extensions of these models to 3D data, such as 3D-GANs Chan et al., 2021 and 3D-VAEs
Foti et al., 2021, have been developed to generate 3D voxel-based representations.

In the case of point cloud data, deep learning models like PointNet Qi et al., 2016 and
PointNet++ Qi et al., 2017 have been adapted for generative tasks, leading to Point Cloud
GANs Li et al., 2018a and Point Cloud VAEs Guo, Du, and Zhao, n.d. that generate realistic
3D point cloud representations of objects. These models play a critical role in our quest
to generate 3D mesh structures, as they provide valuable insights into dealing with non-
Euclidean data and 3D representations.
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4.3.2 Graph generation

Graph generation focuses on creating new graphs that resemble a given set of input graphs,
capturing structural and relational properties. Generative models for graph data include
GraphRNN You et al., 2018, GraphVAE Simonovsky and Komodakis, 2018, and GraphGAN
Wang et al., 2017a. These models are designed to generate realistic graphs with varying
sizes, structures, and properties.

For 3D mesh data, MeshGAN Cheng et al., 2019 and MeshVAE Tan et al., 2017 have been
proposed, which extend the principles of GANs and VAEs to generate 3D meshes. These
models are capable of capturing complex geometric structures and generating high-quality
3D mesh representations.

In "A systematic Survey on Deep Generative Models for Graph Generation Guo and
Zhao, n.d., they propose a taxonomy structure of different generative method of graph gen-
eration:

FIGURE 4.6: Classification of deep generative models for graph generation
problems, Source: Guo and Zhao, n.d.

In the hierarchy depicted in Figure 4.6, the two main classes are unconditional generation
and conditional generation. This master thesis focuses on the task of generating graphs
given an input text. This falls under the umbrella of conditional generation methods. More
specifically, the task can be seen as a form of conditioning on semantic context. This is a
relatively new topic in the field of generative models for graph-structured data.

Given the relative novelty of this subject, it is crucial to leverage insights from other
branches of the domain, particularly from our current understanding of technologies such
as stable diffusion, which served as the initial inspiration for this work.

In the following section, I will first examine the utilization of CLIP in stable diffusion - a
novel model that bridges image and text representations. This understanding will enable us
to identify the most suitable model for our ultimate objective.

4.4 Contrastive Learning and CLIP

Joint-Embedding is a technique where a model learns to map images and their correspond-
ing textual descriptions into a shared embedding space, enabling better understanding and
manipulation of the relationship between the visual and textual data. By training on a large
dataset of images and their associated captions, the model can generate high-quality images
from text prompts and vice versa.

One approach to achieve Joint-Embedding is through Contrastive LearningXie et al.,
2021. Contrastive Learning leverages the principle of maximizing agreement between posi-
tive pairs (images and their associated captions) while minimizing agreement with negative
pairs (images and bad captions). This learning objective encourages the model to project
visually similar images and semantically related captions closer in the embedding space,
while pushing visually dissimilar images and bad captions farther apart.
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FIGURE 4.7: Contrastive pre-training

The figure 4.7, is an official illustration from clip that illustrate how it is pre-trained using
contrastive learning. It is divided into 3 parts, a text encoder, an image encoder, and a shared
embedding. Lets start by talking about the text encoder.

4.4.1 Text Encoder

The Text Encoder is the component of the CLIP model responsible for converting input text
data into a high-dimensional vector representation, known as an embedding. This is done
through a transformer model, a type of deep learning model that has been proven to be
highly effective in Natural Language Processing (NLP) tasks.

In the context of CLIP, the text encoder takes a sentence (or any string of text) as input,
processes it through several layers of transformer blocks, and outputs an embedding that
represents the semantic content of the input text. Each block in the transformer model con-
tains mechanisms to capture the dependencies between the words in the input sentence and
to understand the contextual meaning of each word.

This text embedding can then be used to perform tasks like text classification, text genera-
tion, or, in the case of CLIP, to be compared with image embeddings in the shared embedding
space.

In the next section, I will discuss the Image Encoder of the CLIP model.

4.4.2 Image Encoder

The Image Encoder in the CLIP model is responsible for transforming input images into a
high-dimensional vector representation, similar to the text encoder. The image encoder can
be one of two architectures: Vision Transformer (ViT) or a variant of the Residual Network
(ResNet).

Vision Transformer (ViT)

The Vision Transformer is a recent model architecture that applies the transformer mecha-
nism, traditionally used in NLP tasks, to computer vision tasks. In ViT, the image is first di-
vided into a fixed number of patches. Each patch is then flattened and linearly transformed
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into a sequence of embeddings. These embeddings are passed through a transformer model
to capture the relationships between different parts of the image, resulting in a final image
embedding.

Residual Network (ResNet)

ResNet is a popular model architecture in the field of computer vision. It is characterized
by its use of skip connections, or shortcuts to jump over some layers. These shortcuts help
solve the vanishing gradient problem, enabling the training of very deep networks. In the
context of CLIP, a ResNet-based image encoder transforms an input image through a series
of convolutional layers to generate a final image embedding.

Regardless of the architecture used, the image encoder outputs a vector that represents
the semantic content of the input image. This image embedding can then be compared with
text embeddings in the shared embedding space.

In the next section, I will delve into the shared embedding space, the area where both the
text and image embeddings interact.

4.4.3 Shared Embedding Space

The shared embedding space is where the magic happens. In this space, the image and text
embeddings interact, and CLIP learns to associate the semantic content of images and text.
The embeddings from the image and text encoders are normalized and then compared using
a cosine similarity function, which measures the cosine of the angle between the two vectors.
This yields a similarity matrix S, with entries sij representing the similarity score between
image i and text snippet j.

CLIP is then trained using a contrastive loss function, which encourages the model to
increase the similarity of positive pairs (correct image-text pairs) and decrease the similarity
of negative pairs (incorrect image-text pairs). In other words, the model is trained to match
each image with its correct caption and mismatch it with other captions.

The loss function is formulated as follows:

l(u→v)
i = − log

exp(suv/τ)

∑N
k=1 exp(suk/τ)

(4.6)

Here, l(u→v)
i denotes the loss for image u given caption v, suv represents the similarity

score (in this case cosine similarity) between image u and caption v, and τ is a temperature
parameter that controls the concentration of the distribution. It’s used to control the sharp-
ness of the probability distribution calculated by the softmax function in the loss equation.

The temperature parameter influences the concentration of the probability mass of the
softmax output:

• A high temperature value (i.e., τ >> 1) makes the distribution more uniform. In
other words, the probabilities for all classes become closer to equal. This encourages
exploration, as the model is less certain about its predictions.

• A low temperature (i.e., τ << 1) makes the distribution more "sharp," with the prob-
ability mass concentrated on the class with the highest logits (before softmax). This
makes the model more confident in its predictions, encouraging exploitation.

In CLIP, the temperature parameter τ helps in controlling how hard or soft the assign-
ments of the text-image pairs are. The optimal value of τ is usually found through experi-
mentation or hyperparameter tuning.

The loss for the reverse direction, that is, the loss for caption v given image u is calculated
in a similar manner:

l(v→u)
i = − log

exp(svu/τ)

∑N
k=1 exp(svk/τ)

(4.7)

Finally, the overall loss function, denoted by L, is computed as the sum of the losses for
all image-caption pairs in the dataset:
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L = ∑
u,v

[l(u→v)
i + l(v→u)

i ] (4.8)

By minimizing this loss function, CLIP learns to map semantically similar images and
text snippets close to each other in the shared embedding space.

Unlike standard classification tools, which are typically trained to map inputs to a fixed
set of output classes, CLIP is designed to associate inputs from one modality (e.g., text) to
inputs from another modality (e.g., images), in a way that preserves semantic relationships.
This joint embedding approach enables CLIP to understand a much wider range of inputs
than a typical classifier, since the potential range of inputs includes all possible texts and
images, not just a pre-defined set of classes. In addition, CLIP’s ability to understand the
semantic content of both images and text allows it to leverage a vast amount of loosely la-
beled data from the web, which is something that standard classifiers often struggle with.
CLIP’s training process, which involves contrasting positive pairs (matching images and
texts) against negative pairs (non-matching images and texts), also tends to produce more
robust and generalizable representations than standard classification training. These ad-
vantages make CLIP an excellent tool for tasks involving cross-modal understanding and
generation, such as the Stable Diffusion process I are considering.

In the next section, I will finally see the full architecture of stable diffusion that will be
the main source of insipiration for my model presented in the next section.

4.5 Stable-Diffusion

Stable Diffusion AI, 2022 is a state of the art generative model that employs diffusion-based
techniques to generate high-quality visual outputs, offering potential applications in do-
mains such as computer vision and art4.8

FIGURE 4.8: Stable diffusion high quality image generation example, Source:
AI, 2022
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FIGURE 4.9: Stable diffusion architecture, Source: AI, 2022

Stable diffusion is a recent development in generative modeling, yet its fundamental
principles have been explored in previous research. These principles typically involve set-
ting up a generative process as a Markov chain, where each step evolves the state of the
system (i.e., the generated data) according to certain rules, usually involving a form of ran-
dom perturbation. Over time, the system converges to a stable distribution that is the target
of the generative process.

The key novelty introduced by Stable Diffusion is the application of the CLIP model as
a "switch". Instead of using a standard Markov chain process, Stable Diffusion applies the
CLIP model to control the generative process. CLIP is a model developed by OpenAI that
can learn to associate images and text by mapping them into a shared embedding space.
By utilizing the ability of CLIP to understand both visual and textual data, Stable Diffusion
uses this model to guide the Markov chain process, nudging it towards states that are more
consistent with a given text prompt.

Moreover, the Stable Diffusion approach introduces an additional layer of abstraction by
performing the diffusion process in a latent space. This latent space is obtained through
a Variational Autoencoder (VAE). The VAE is a type of generative model that can learn to
compress data into a lower-dimensional latent space in a way that is useful for generative
tasks. The latent space captures the key factors of variation in the data, allowing the genera-
tive process to focus on these main factors, making the diffusion process more efficient and
effective.

Therefore, the major innovation of Stable Diffusion comes from the combination of a
Markov chain-based generative process with a powerful joint embedding model (CLIP), and
the use of a latent space obtained from a VAE for the diffusion process. This combination
results in a robust and versatile generative model that can generate high-quality data from
complex and diverse prompts.
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Chapter 5

MeshGNN: Model proposition

Given the current state-of-the-art, the highest quality generation models are typically based
on diffusion models. However, these models can be computationally expensive and complex
to train. Furthermore, the area of graph diffusion is relatively nascent, attracting high levels
of interest and competitive research.

Taking into consideration these challenges and computational constraints, it quickly be-
came apparent that Graph Variational Autoencoders (Graph VAEs) offer an attractive alter-
native. While they have been extensively used for generating various types of graph data,
their potential for spatial data generation remains largely untapped.

A Graph VAE, like a traditional autoencoder, consists of an encoder and a decoder. For
the encoder, I could utilize architectures like Graph Convolutional Networks (GCNs) or
Graph Attention Networks (GATs). The decoder would be a simple cross product decoder.

To generate high-quality 3D meshes, the plan is to leverage the power of CLIP, a model
developed by OpenAI. I propose two different architectures: one that includes a compatibil-
ity layer, which employs a Multilayer Perceptron (MLP) to bridge the gap between the image
space and the graph space, and a second one where the CLIP image encoder model natively
ingests graph embeddings. In the following sections, I will elaborate on these proposed
architectures and discuss their potential benefits and drawbacks.

5.1 Fine Tuning of Clip witout compatibility layer

FIGURE 5.1: Clip Naive, without compatibility layer

In our proposed model, I aim to fine-tune CLIP without the compatibility layer. This in-
volves two primary paths of information flow.

1. Text-to-Clip: In this path, I feed the input text to the CLIP text encoder. The resulting
text embedding is then fed into the CLIP model.
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2. Graph-to-VAE-to-Clip: In this path, I first feed the graph into the Graph VAE encoder,
which transforms the graph into a low-dimensional embedding. This graph embed-
ding is then passed into the CLIP image encoder, and the resulting image embedding
is fed into the CLIP model.

The aim is to make the graph embedding (after being transformed to image form by the
CLIP image encoder) as similar as possible to the concept described by the input text. During
training, I optimize the model to minimize the distance between these two embeddings.
This fine-tuning process allows us to generate graphs that closely match the descriptions
provided in the input text.

The absence of a compatibility layer in our model design allows for a direct comparison
between the embeddings generated from the text input and the graph input, potentially
leading to a more efficient model. This proposed model leverages the strengths of Graph
VAEs and CLIP, providing a novel approach for generating graph data from text inputs.

It is important to notice that the image encoder will create an image that will not be
present in the data! For this method, the fine tuning is essential for it to work.

Another point to take into account is that, while it seems possible that passing from graph
embedding to the shared embedding without passing threw an autoencoder seems possible,
I would argue that the training should start from scratch instead of finetuning. This would
require a lot more training.

5.2 Fine Tuning of Clip with compatibility layer

FIGURE 5.2: Clip training with compatibility layer

In an alternative fine-tuning approach, I can introduce a compatibility layer to connect the
image space and the graph encoding space. The compatibility layer, implemented as a Multi-
Layer Perceptron (MLP), is designed to transform the graph embeddings generated by the
VAE encoder into a format compatible with the CLIP image encoder.

The information flow in this setup involves the following steps:

1. Text-to-Clip: As in the previous setup, I feed the input text directly into the CLIP text
encoder and pass the resulting text embedding to the CLIP model.

2. Graph-to-Image-to-Clip: The input graph is projected into multiple images. These
images are passed into the CLIP image encoder to generate image embeddings.

3. Graph-to-VAE-to-MLP-to-Clip: In parallel with the above step, the input graph is also
passed into the Graph VAE encoder, which generates graph embeddings. These graph
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embeddings are transformed by the MLP compatibility layer into a format that can be
processed by the CLIP image encoder. The transformed embeddings are then passed
into the CLIP model.

During training, the aim is to minimize the distance between the text embeddings and
the embeddings generated from the MLP-transformed graph embeddings. The compatibil-
ity layer allows us to directly generate CLIP-compatible embeddings from the graph data,
potentially enhancing the model’s ability to generate graphs that closely match the descrip-
tions provided in the input text.

This proposed approach effectively bridges the gap between the image and graph encod-
ing spaces, leveraging the strengths of Graph VAEs, CLIP, and an MLP compatibility layer
to provide a novel methodology for generating graph data from text inputs.

It is important to notice that the quality of the result will not depend on the quality of
the image as input but the quality of the learned MLP. The Image has only here a role of
classification.

5.3 Generation

FIGURE 5.3: MeshGraph Full Architecture

In order to use CLIP for data generation, I modify its original use as a classifier and repur-
pose it as a generative model. This is accomplished using a learned Multi-Layer Perceptron
(MLP) compatibility layer and a variational graph autoencoder (VAE).

The proposed generative approach involves the following steps:

1. Noise Generation: I initialize a learnable generator to produce a random noise vector.
This noise vector is seen as the latent variable which would be used for generating the
graph.

2. MLP Transformation: I feed the generated noise vector into the learned MLP, which
transforms the noise into a format compatible with the image encoder of CLIP.

3. Decoding to Graph: The MLP-transformed noise vector is then fed into the Graph
VAE decoder, which generates a graph representation from the noise vector.

4. Prediction by CLIP: The MLP-transformed noise vector is also fed into the fine-tuned
CLIP model, resulting in an initial prediction of the graph’s textual description.

5. Comparison with Text Encoder: In parallel with the above steps, the input text is
passed through the CLIP text encoder, which generates an embedding representing
the desired graph.
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6. Loss Calculation and Backpropagation: A loss is calculated using cosine divergence
between the prediction from the fine-tuned CLIP model and the embedding from the
text encoder. This loss is backpropagated through the learnable generator, which ad-
justs its parameters to reduce the loss.

7. Iteration until Convergence: The above steps are repeated until the loss converges
to a minimum. At this point, the learnable generator is capable of producing noise
vectors that, when transformed by the MLP and decoded by the VAE, yield graph
representations closely matching the descriptions provided in the input text.

In this way, I hope to achieve the generation of graphs that are in close alignment with the
textual descriptions, utilizing the strengths of CLIP, Graph VAEs, and MLPs for generative
tasks.

5.4 Limitations

As with all models, our proposed MeshGNN approach has its own set of limitations that
need to be acknowledged:

1. Training Complexity: Training such a complex generative model could be a daunting
task, as the interaction between different parts of the model such as Graph VAE, CLIP,
and the MLP might lead to a high-dimensional, non-convex optimization problem.
Therefore, training may be computationally intensive, and finding optimal solutions
could be challenging.

2. Graph Quality: The quality of the generated graphs heavily depends on the capabil-
ities of the VAE decoder. If the decoder fails to generate high-quality graph repre-
sentations, the overall quality of the generated data might be low, regardless of the
performance of other components in the system.

3. Textual Description Dependence: The generation process heavily relies on the textual
description provided as input. Hence, the quality and specificity of this description
could significantly affect the output. A vague or generic description might lead to
poorly defined or ambiguous graphs.

4. Data Requirement: The model requires significant amounts of training data to ef-
fectively learn the intricate relationships between the text descriptions and the corre-
sponding graph structures. This might pose a challenge if such specific training data
is not readily available.

5. Computational Resources: The proposed architecture is likely to be resource-intensive,
requiring significant computational power and memory for training and inference.
This might limit its applicability in low-resource settings.

6. Data Complexity: The model might struggle with complex graphs or those that incor-
porate high-level abstract concepts that are difficult to encode in a graph structure.

Despite the limitations mentioned, the proposed MeshGNN architecture demonstrates
the potential of leveraging a compatibility layer to bridge the gap between the image and
graph spaces, enabling the generation of intricate 3D mesh structures. While it doesn’t fully
exploit the capabilities of the powerful CLIP model, it provides a more efficient approach
that avoids the need for extensive retraining.

Future work could focus on refining this compatibility layer, exploring different types of
transformations or architectures, or developing novel training strategies to better align the
graph and image spaces. Additionally, investigating the application of MeshGNN in differ-
ent domains, or extending it to handle more complex graph structures could also provide
interesting avenues for future research.

Ultimately, the goal is to advance the state of the art in 3D mesh generation and contribute
to the broader efforts in understanding and harnessing the complex interplay between tex-
tual descriptions and visual or graph-structured data.
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Chapter 6

Experiment: CLIP Generation of
3D model

6.1 Datasets and Datapreparation

6.1.1 ShapenetSem

In this experiment, I will use the ShapeNetSem dataset released in June 2015 (v0) Savva,
Chang, and Hanrahan, n.d. This dataset is a richly annotated subset of ShapeNet containing
3D models with various physical attributes. The dataset includes 3D models in multiple
formats such as OBJ, COLLADA (DAE), and binary voxelizations (binvox).

The metadata associated with each model is stored in a metadata.csv file, containing in-
formation such as unique model ID, manually annotated categories, WordNet synset offsets
and lemmas, normalized vectors indicating semantic orientation, scale unit, dimensions,
container-like properties, volume, surface area, weight, and friction force. Other metadata
files include material priors, material densities, and a taxonomy of manual categories.

I will preprocess the ShapeNetSem dataset by transforming the 3D models from mesh
format to graph format. Several possible settings for this transformation can be considered:

• Directly convert the mesh to a graph by considering vertices as nodes and edges as
connections.

• Use a nearest-neighbor approach to connect vertices within a certain distance thresh-
old.

• Apply a clustering algorithm to group vertices and create nodes representing each
cluster, followed by establishing connections based on cluster proximity.

• Compute a set of feature points on the mesh and connect them based on geometric or
topological similarity, creating a sparse graph representation.

The choice of transformation settings will depend on the specific requirements of the
stable diffusion process and the desired level of detail for the graph representation. By con-
verting the 3D models into graphs, I aim to leverage the power of geometric deep learning
techniques.

For the text embedding process, I will utilize an open source LLM TheBloke/LLaMA-7b-
GPTQ · Hugging Face n.d. that transform raw input into english sentences definitions. This
state-of-the-art model provides high-quality text embeddings, capturing both semantic and
syntactic information in the input text. This metadata includes physical properties of the
material, descriptions, and categories of objects. By converting this metadata into a continu-
ous vector representation, I can efficiently incorporate this information into the stable diffu-
sion process for 3D model generation. Utilizing this additional information can potentially
improve the quality and accuracy of the generated 3D models by providing context-aware
features.
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6.1.2 MNISTSuperpixel

On the other hand, MNISTSuperpixel torchgeometric.datasets.MNISTSuperpixels n.d. is a
relatively simpler dataset that contains graphs generated from MNIST digits by using a su-
perpixel segmentation algorithm. Each graph node corresponds to a superpixel, and edges
are formed between adjacent superpixels. The node features include the position and color
information of the corresponding superpixel.

Despite its simplicity, this dataset allows us to explore the capabilities of my model in
a controlled setting. In my experiments, I use the full dataset, comprising 60,000 graph
representations of MNIST digits.

6.2 Implementation Details

My implementation is based on Python and makes use of the PyTorch https://pytorch.
org/ for the MeshGNN model and the PyTorch version of the CLIP model provided by
OpenAI https://openai.com.

I make use of Google Colab Pro Colab Subscription Pricing n.d. for my experiments due to
its affordability and the availability of powerful GPUs.

My code and models are publicly available on GitHub at https://github.com/RobinPourtaud/
meshgraph.

For model tracking and version control, I use Weights and Biases (wandb) https://wandb.ai/.
It provides a comprehensive suite of tools for tracking experiment metadata, including input
data, hyperparameters, output data, and a fully versioned history of code. This allows us to
keep track of different models and experiment runs, and compare their performances easily.

In the following sections, I present the results of my experiments and discuss their impli-
cations.

6.3 Results and comments

6.3.1 Graph Variational AutoEncoder

The proposed architecture utilizes a Graph Variational Autoencoder to facilitate the gener-
ation of diverse graphs derived from the dataset. This methodology forms the crux of the
initial experimentation stage.

An extensive set of hyperparameters was scrutinized to ascertain the optimal configura-
tion for the system. The specific details regarding the hyperparameters and the grid search
process have been thoroughly documented on GitHub. The hyperparameters that emerged
as most effective were a learning rate of 0.01, and the employment of the Adam optimizer
for a span of 10 epochs. Although extending the epochs could potentially enhance the per-
formance, it was observed that this incurred a prohibitively long computational duration.
The batch size was set to 64.

The GCNConv, as anticipated, manifested as the superior convolution method across all
subsequent experiments. The encoder hidden channels were configured to 64, and an output
configuration of 8 proved adequate for the MNISTSuperpixel dataset. The system achieved
a loss score of 1.008 6.1

The following sections illustrate some of the results derived from the aforementioned
setup.

https://pytorch.org/
https://pytorch.org/
https://openai.com
https://github.com/RobinPourtaud/meshgraph
https://github.com/RobinPourtaud/meshgraph
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FIGURE 6.1: Top MNISTSuperpixel Loss for VGAE

Although the loss metric cannot be relied upon as an absolute measure of performance,
it serves a crucial role in comparing different models during the training phase. Specifically,
it enables a quick evaluation of whether or not the model is being effectively trained.

The experimental results indicated that the encoder output dimensionality was a paramount
factor influencing the performance. Particularly for the MNIST dataset, it was observed that
a lower encoder output dimensionality resulted in better performance. This could poten-
tially be attributed to the inherent simplicity of the MNIST dataset.

The ensuing section presents the results derived from these experiments.

FIGURE 6.2: Sample results of generation

In Figure 6.2, for each numeral from left to right, we have the original MNIST image,
its equivalent in the MNIST Superpixel dataset, and the reconstruction produced by the
Variational Autoencoder.

The results obtained are encouraging, given that Variational Autoencoders aim to pro-
duce structures that are similar but not identical to the input data.

A similar process was conducted for the ShapeNet dataset, which only includes two
classes: Tables and Chairs. Given the increased complexity of this dataset, the training pro-
cess was substantially more challenging and time-consuming, which limited the scope for
hyperparameter tuning and the number of epochs. These constraints may account for the
observable quality of the results. The best model achieved a loss of 18.2. While it is difficult
to interpret this loss value in isolation, the quality of the output models suggests that further
analyses might not yield significant improvements. Figure 6.3 provides an overview of the
results.
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FIGURE 6.3: Shapenet Graph Variational Auto Encoder Results

For both experience, an hyperparameter has been used to choose the probability of link
between nodes. It has been set to 0.7 arbitrarely, given its only visual impact.

6.3.2 Clip

Unfortunately, our attempt to utilize CLIP without a compatibility layer did not yield satis-
factory results, primarily due to the computational limitations encountered when retraining
such an extensive model on Google Colab Pro.

Therefore, the subsequent results presented here pertain exclusively to experiments con-
ducted using CLIP with a compatibility layer.

Below are the top three image models utilized by CLIP that produced the most promising
results:

RN50x64 RN50x16 VIT-L/14
1 0.33 0.60 0.32
2 0.60 0.72 0.59
3 0.70 0.76 0.71
4 0.73 0.81 0.77
5 0.83 0.84 0.81

TABLE 6.1: CLIP with compatibility layer results for MNISTSuperpixel

In this context, "top" is defined by the global accuracy of the model in assigning the
correct label within the top 1, top 2, etc., predictions.

OpenAI claims a CLIP accuracy rate of 66.6 percent, yet the highest I achieved was 60
percent. This discrepancy is likely due to the inherent inaccuracies of the Multilayer Percep-
tron (MLP) applied on top of the model.

6.3.3 Graph CLIP and Full Model

The complexity of comparing graph structures prevented us from using an automated pro-
cess for evaluation. Therefore, the results were evaluated manually. Here are some examples
with and without the compatibility layer:
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FIGURE 6.4: Result of the model to generate some example from text input,
good examples

FIGURE 6.5: Result of the model to generate some examples from text input,
bad examples

As anticipated, the experimental outcomes, although not ideal, demonstrate the func-
tioning of the proposed system. In theory, enhanced performance can be achieved with
more training.

There are four crucial reasons accounting for the current results:

1. The MLP, which is an integral part of the process, exhibits an accuracy of merely 65
percent.

2. The Variational Autoencoder (VAE) generates data that is similar to the input, but not
identical, thereby adding an unpredictability element.

3. In the final experiment, the node embeddings were not computed, leaving the node
placement task to the spring layout algorithm.

4. Despite these challenges, the model was able to generate correct outputs for some
numbers, indicating that further training could potentially improve its performance.

The experiments undertaken in this thesis have demonstrated the potential for generat-
ing 3D mesh structures from textual inputs using a compatibility layer between graph space
and image space without the need for retraining CLIP. Despite certain limitations and chal-
lenges, such as an accuracy level of 65 percent for the MLP, unpredictability in VAE’s output,
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and the computation of node embeddings, the model displayed promising results in some
instances.

Though the results were not perfect, they showed that the system functions as intended
and gave credence to the idea that, with more training, the performance could improve. The
successful generation of correct outputs for certain numbers further reinforces this belief.
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Chapter 7

Conclusion and Future Directions

In this research, the potential of generating 3D mesh structures, represented as graphs or
hypergraphs, from textual inputs was thoroughly explored. The promising results obtained
suggest numerous avenues for future research and applications.

One of the intriguing possibilities is the adaptation of the CLIP architecture to natively
generate graphs, a significant shift from its current functionality, which predominantly in-
volves image generation. This would not only open up a new realm of applications but
would also contribute to the fundamental understanding of how various data types can be
interconnected and used for generation tasks.

In a broader sense, the application of such a model could extend beyond 3D modeling
and computer graphics. For instance, it might be employed in fields such as computational
biology for the generation of protein structures or in social network analysis for the genera-
tion of community structures, based on textual descriptions or properties.

In conclusion, the field of graph generation, especially from diverse inputs such as textual
data, is an emerging and exciting domain with vast potential for interdisciplinary research
and applications. This thesis serves as a starting point for this exploration, and it is hoped
that future work will continue to push the boundaries of what is possible in this area.
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Appendix A

NII Introduction

The National Institute of Informatics (NII) is a leading research institute in Japan, focusing
on the development and advancement of informatics and its applications. Established in
2000, the NII is dedicated to conducting cutting-edge research in various fields of informa-
tion science, including artificial intelligence, data science, computer science, and information
systems.

As an interdisciplinary research institute, the NII aims to provide solutions to real-world
problems through the collaboration of experts from different domains. The institute is com-
mitted to fostering the growth of informatics and nurturing the next generation of researchers
and professionals in the field. The NII offers a wide range of academic programs and re-
search opportunities, from undergraduate and graduate level education to postdoctoral re-
search positions.

The NII is actively involved in international collaborations and partnerships, working
closely with universities, research institutions, and industries around the world. By lever-
aging its expertise and resources, the NII contributes to the global scientific community and
helps address the challenges of today’s rapidly evolving digital society.

With a strong focus on both theoretical and applied research, the NII continually pushes
the boundaries of informatics, driving innovation and shaping the future of information
science and technology.

https://www.nii.ac.jp/

https://www.nii.ac.jp/
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